

Intubating and Ventilating the Obese Patient

Key Article

• De Jong A, Chanques G, Jaber S. Mechanical ventilation in obese ICU patients: from intubation to extubation. Crit Care 2017; 21:63.

Background

- Prevalence of obesity in the US has now risen to 35% of population
- Obesity is a significant problem in the ICU

Physiologic changes with obesity

- Oxygenation decreases with increasing in weight
 - Oxygen consumption increased 1.5 times higher than in non-obese patients
 - Work of breathing increased the spontaneous breathing rate in morbidly obese patients ranges from 15 to 21 bpm compared with 10 to 12 in non-obese patients
- Excess production of CO2
- Increased atelectasis
 - Negative effects of thoracic wall weight
 - Abdominal mass pushes up on diaphragm
 - \circ $\,$ Leads to decreased FRC $\,$
 - Further exacerbated in the supine position
 - Many changes persist even after extubation compared with non-obese patients
- Decreased pulmonary and thoracic compliance due to thoracic and abdominal adipose tissue
- Increased airway resistance
- Can develop OSA and obesity hypoventilation syndrome

Airway Management

- Patient positioning
 - Supine position significantly reduces pulmonary compliance
 - Elevate the head of the bed put external auditory canal in line with sternal notch
- Pre-oxygenation
 - Patients are at high risk of desaturation due to poor cardiopulmonary reserve

- Safe apnea time with facemask or NRB may be less than 1 minute!
- o NIV
 - Use a PEEP of 10 cm H2O during pre-oxygenation
 - Most beneficial when used for at least 5 minutes
- \circ HFNC
 - May be considered for pre-oxygenation or apneic oxygenation
- RSI
 - Obesity is an independent risk factor for difficult intubation and BVM
 - Bhat R, et al. Analysis of rapid sequence intubation medication dosing in obese patients intubated in the ED. Am J Emerg Med. 2016
 - Compare rates of inappropriate RSI medication dosing in obese and non-obese patients
 - Retrospective review of single center, urban, tertiary care, academic center
 - 440 patients: 29% obese
 - Used etomidate and succinylcholine as medications
 - Obese patients
 - More likely to be under dosed with succ (OR 63.7)
 - More likely to be under dosed with etomidate (OR 178.3)

Mechanical Ventilation

- Mode
 - No optimal mode of mechanical ventilation
 - Some prefer pressure controlled mode
 - Decelerating flow may allow better distribution of flow in alveoli
 - However, if airway resistance increases or compliance decreases, tidal volume will decrease and lead to hypercapnia
 - Must monitor tidal volume, minute ventilation, and capnography
 - Volume controlled mode
 - Carries the risk of increased pressure to provide desired tidal volume
 - Must monitor plateau pressure
- Tidal Volume
 - Lung protective tidal volumes 6 to 8 ml/kg IBW
 - Based on height and not weight
 - Goyal M, et al. Body mass index is associated with inappropriate tidal volumes in adults intubated in the ED. Am J Emerg Med. 2016
 - Retrospective study from single center, urban, academic ED
 - To determine if BMI is associated with inappropriate TV settings
 - 517 patients
 - 21.7% had TV settings > 10 ml/kg IBW
 - Obese patients had higher odds of inappropriate settings
 - As BMI increased, tidal volume increased

- Respiratory Rate
 - Obese patients have excess production of CO2 due to increased oxygen consumption and increased WOB
 - Spontaneous breathing rates closer to 20 bpm in obese patients
 - RR should be set for increased breathing rate
- PEEP
 - Given decreased FRC, obese patients are more sensitive than non-obese patients to atelectasis and lack of PEEP
 - Better to apply PEEP at the start of mechanical ventilation in obese patients
 - PEEP of 10 cm H2O is recommended though optimal level unknown
 - o Must be balanced by hemodynamic effects of high PEEP
- Driving Pressure
 - Concept assumes that functional lung size is better quantified by compliance than by predicted body weight
 - Driving pressure = plateau pressure PEEP
 - Lower levels of driving pressure are associated with increased survival
- Recruitment Maneuvers
 - In obese patients, shown to improve arterial oxygenation and available lung volume
 - o Best recruitment maneuver not determined
 - Reference method is an expiratory pause with a PEEP of 40 cm H2O for 40 seconds
 - Alternative progressive increase in PEEP until 20 cm H2O with a constant tidal volume within 35 cm H2O of plateau pressure
 - \circ $\,$ Careful with hemodynamic status during this maneuver $\,$
- Patient positioning
 - Higher tidal volumes and lower respiratory rates when patients placed in a reverse Trendelenburg position
 - Do not keep in supine position