

Euglycemic DKA in Patients Taking SGLT2 inhibitors

Key Articles

- Rosenstock J, Ferrannini E. Euglycemic Diabetic Ketoacidosis: A Predictable, Detectable, and Preventable Safety Concern with SGLT2 Inhibitors. Diabetes Care. 2015;38(9):1638-42.
- Ogawa W, Sakaguchi K. Euglycemic diabetic ketoacidosis induced by SGLT2 inhibitors: possible mechanism and contributing factors. Journal of Diabetes Investigation. 2016;7(2):135-138.

Patient Presentation

29-year-old female with h/o difficult to control type-1 diabetes presents with nausea/vomiting and feeling "weak". She takes insulin at home for her diabetes and recently started dapagliflozin therapy under the direction of her endocrinologist. Vital signs are: AF, HR 120, BP 90/60, RR 30, SpO₂ 99%. Physical exam is unremarkable except for a mildly tender epigastric area. Labs return with a VBG of 7.10, PCO2 of 22, and a LA: 3.1. K 6.1, AG 26, BHB 7.5. Patient was admitted to the ICU, her AG closed within 7-8 hours, but quickly reopened requiring an insulin infusion once again.

Background

- Common oral diabetic therapies used today:
 - Insulin sensitizers (Metformin)
 - Secretagogues (Sulfonylureas)
 - GLP-1 analogues
 - o Gliptins
 - New Kid on the Block: Sodium-glucose cotransporter 2 (SGLT-2) inhibitors
 - Gliflozins (Canagliflozin, dapagliflozin, etc.) more commonly being prescribed as a 2nd line treatment.
- Recognized complications of oral DM treatments
 - Hypoglycemia, prolonged hypoglycemia
 - o Lactic acidosis
 - Increase in reports of "Euglycemic DKA" as a result of SGLT-2 inhibitors

SGLT2 Inhibitors

• **Mechanism**: Targets the SGLT2 receptors in the proximal renal tubules, preventing the reabsorption of glucose from urine, effectively causing glucose loss through urinary excretion.

- **Growth in frequency of use:** Over the past 5 years, there has been increased utilization of recently FDA approved sodium-glucose cotransporter 2 inhibitors for the outpatient management of Type 2 and in some cases, as an off-label adjunctive treatment for T1D
 - $\circ~$ Based off of initial FDA studies of SGLT2i's, appeared to be a low risk medication where the risk of DKA was < 0.1%
 - **Favorable side effect profile:** An increase in reported (+) side effects including *less glucose variability, weight loss, and lower insulin doses* that has even made its way through social media outlets has increased consumer requests for the drug to be added to their DM regimen, even in T1D patients.

PEARL: Gliflozins are usually dosed daily, and usually have a half-life of 11-13 hours. As a result, effects are often prolonged especially in acute illness.

Euglycemic DKA in SGLT2i Use

- Traditional DKA presentation: In both T1D and T2D, DKA presents with marked hyperglycemia, typically > 350 mg/dL, glycosuria, metabolic acidosis, and hyperketonemia (BHB levels > 4)
- **Euglycemic DKA** is defined as DKA with a plasma GLU < 300 mg/dL, can happen in T1D but also in patients taking a SGLT2i.

• Why SGLT2i's can cause ketoacidosis

- T2D patients have insulin, but increased urinary excretion of GLU and make the body turn to glycolysis and ketosis as a means for energy production
- Home plasma GLU levels are often "normal"

- Patients think will often decrease home sliding scale use, which will in turn increase glucagon release and ketogenesis.
- Risk factors for development:
 - Type 1 diabetics
 - Change in carbohydrate intake (starvation)
 - o Recent surgery, New onset illness/increased metabolic stressor
 - Decreased home insulin administration
 - o Alcohol use

Treatment

- Fortunately, the treatment of euDKA is very similar to standard DKA
- Fluids: Focus on IV fluid resuscitation first (SGLT2i's cause glucosuria and volume depletion)
- **Insulin:** Low dose insulin infusion often required to improve intracellular glucose utilization and reduce ketosis
- **D**₅**NS**: Concomitant dextrose infusion prevents hypoglycemia
- Once patients taking SGLT2i's develop DKA, they are often permanently discontinued

PEARL: Even if the anion gap closes, patients will often need to continue insulin infusion therapy for 24-hours, as SGLT2i's have a prolonged half-life.

Common side effec	ts of other oral anti	hyperglycemic agents

Common Oral Antihyperglycemic Agents and Effects			
Mechanism	Class	Common Drug Names	Side Effects
"Secretagogues:"	Meglitinides	Repaglinide	Hypoglycemia, short-acting (<4hrs)
↑ production of insulin		nateglinide	
by acting on	Sulfonylureas	Chlorpropamide	Hypoglycemia, chlorpropamide: SiADH,
pancreas; can cause		glipizide, glyburide,	disulfiram-like reaction
severe hypoglycemia		glimepiride, gliclazide	
"Sensitizers": 个	Biguanides	Metformin	Lactic acidosis, diarrhea, B ₁₂ deficiency
sensitivity to insulin		phenformin	
	Thiazolidinediones	Rosiglitazone,	Hepatotoxicity, heart failure
		pioglitazone	exacerbation, 个 fracture risk
↑ Insulin secretion	Glucagon-like	Exenatide, liraglutide	Nausea, pancreatitis (exenatide)
(glucose dependent)	peptide (GLP-1)		
\downarrow glucagon	analogues		
Dipeptidyl peptidase-4	Gliptins	Sitagliptin (Januvia [®]),	Upper respiratory infection symptoms,
(DPP-4)		vildagliptin, saxagliptin	headache, acute pancreatitis (questionable)
inhibitors: 个 GLP-1,			
\uparrow insulin, \downarrow glucagon			
α-Glucosidase	Oligosaccharide	Acarbose, miglitol,	Hepatotoxicity, abdominal cramping, diarrhea
inhibitors: 🗸 carbohyd		voglibose	
rate digestion			
SGLT-2 inhibitors:	Gliflozins	Canagliflozin (Invokana [®]),	Euglycemic DKA, orthostasis, urinary tract
blocks Na-glucose		dapagliflozin	infections, mycotic infections
co-transporter 2			(balanitis, vaginitis), 个 K ⁺

Reproduced from the Pressor-Dex, 2nd edition. Authors: Stader D, and Cao J.