

ED Mechanical Ventilation Pearls & Pitfalls

Key Articles

- Stephens RJ, et al. Analgosedation practices and the impact of sedation depth on clinical outcomes among patients requiring mechanical ventilation in the ED: A cohort study. Chest. 2017 [Epub ahead of print]
- Fuller BM, et al. Lung-protective ventilation initiated in the emergency department (LOV_ED): A quasi-experimental, before-after trial. Ann Emerg Med 2017

ED Mechanical Ventilation Matters!

- Background
 - o Approximately 250,000 patients receive MV in US EDs each year
 - Pulmonary complications (ARDS, VAP) develop in about 20% of ED patients receiving MV
 - o Time spent in the ED is a vulnerable period
 - $\circ~$ Recent evidence suggests that potentially injurious ventilator practices are common in the ED
 - o Initial ventilator settings influence future delivery of LPV
- Fuller BM, et al. Lung-protective ventilation initiated in the emergency department (LOV_ED): A quasi-experimental, before-after trial. Ann Emerg Med 2017
 - Objective
 - Evaluate the effectiveness of an ED-based lung protective mechanical ventilation protocol on reducing the incidence of pulmonary complications
 - o Study
 - Quasi-experimental, before-after study
 - Consisted of preintervention period (2009-2014), run-in period during which LPV was implemented as standard approach, and then intervention period (2014-2016)
 - Single center, academic, tertiary medical center ED and ICU
 - Patients
 - Consecutively vented ED patients
 - Adults 18 years or older
 - Mechanical ventilation through an ETT
 - Interventions
 - After intubation, RT obtained accurate height with a tape measure
 - Tidal volume set to 6 ml/kg PBW (Range 6-8 ml/kg if no ARDS)
 - HOB elevation to > 30 degrees

- Set PEEP to greater than or equal to 5 cm H2O (PEEP higher for elevated BMI)
- Initiate FiO2 at 30-40% after intubation; titrated to maintain SpO2 90-95%; if hypoxic used PEEP table for FiO2/PEEP combination
- Set RR to 20-30 bpm
- Measure and limit plateau pressure < 30 cm H2O
- All interventions performed by ED clinical staff
- Primary Outcome
 - Composite of pulmonary complications after admission (ARDS and ventilator-associated conditions)
- Results
 - 1705 patients
 - Tidal volumes:
 - Reduced by a median of 1.8 ml/kg PBW
 - LPV increased by 48.4% in ED
 - Also, ICU tidal volumes decreased by median of 1.1 ml/kg PBW and LPV increased by 30.7%
 - Primary outcome:
 - Absolute risk reduction of 7.1% (aOR 0.47)
 - Increase in ventilator free days, ICU free days, and hospital free days
 - Absolute risk reduction for mortality of 14.5%
- Limitations
 - Before and after study design (prone to temporal trends that may lead to independent changes in care)
 - Causation or association?
 - Single center study
 - Some imbalances between the 2 groups
- Take Home Point
 - ED ventilator settings matter and can lead to improved outcomes

Provide Adequate Analgesia and Sedation

- Intubated ED patients experience pain from many things, including:
 - Mechanical ventilation
 - o Procedures
 - Nursing care
- They often cannot report their pain due to mechanical ventilation, altered mental status, paralysis, etc. BUT, they remember!
 - Rotondi, et al. Crit Care Med 2002
 - 82% remember the pain of an ETT
 - Gelinas, et al. Intensive Crit Care Nurse 2007
 - 77% remember pain during critical illness/ICU stay
- Untreated pain has both short- and long-term consequences
 - Increases catecholamines -> vasoconstriction -> impaired perfusion -> increase myocardial oxygen demand

- Increasing incidence of PTSD in both patient and family members
- Providers routinely underrate and undertreat pain in intubated/critically ill patients
- Barr J, et al. Clinical Practice Guidelines for the Management of Pain, Agitation, and Delirium in Adult Patients in the Intensive Care Unit. Crit Care Med. 2013
 - Vital signs are inadequate at determining who needs analgesics or sedatives
 - Use of protocols for Pain and Agitation
 - Shorten duration of mechanical ventilation
 - Provide more precise dosing
 - Reduce medication side effects
 - Reduce ICU LOS
 - Recommendations
 - Use an analgosedation approach
 - Start with opioids first (none have been shown to be superior)
 - Then provide sedative
 - Target lighter levels of sedation (RASS 0 to -2)
 - Avoid benzodiazepines when possible
 - Prefer propofol or dexmedetomidine
- Faust AC, et al. Impact of an analgesia-based sedation protocol on mechanically ventilated patients in the medical intensive care unit. Anesth Analg 2016; 123:9903-9.
 Objective
 - Objective
 - Evaluate the impact of an analgosedation protocol on duration of mechanical ventilation, ICU LOS, sedation levels, and medication costs.
 - o Study
 - Retrospective cohort study
 - MICU at Texas Health Presbyterian Hospital of Dallas large, teaching, community hospital with 24-bed MICU
 - Preimplementation Group
 - Adult MICU patients between June 1, 2011-December 1, 2011
 - Managed by their 2009 sedation policy and protocol
 - Typically given propofol for sedation, then IV narcotics (morphine) or a second sedative agent (midazolam)
 - Postimplementation Group
 - Adult MICU pts vented between June 1, 2010-December 1, 2013
 - Changed approach in 2012
 - Focused on treating pain before sedative or antipsychotic use
 - Used IV fentanyl first, then propofol or dexmedetomidine afterwards
 - Primary outcome: duration of mechanical ventilation
 - o Results
 - 237 patients
 - Postimplementation group
 - Lighter levels of sedation
 - Decreased mechanical ventilation (45 hours)

- Decreased ICU LOS (51 hours)
- Better pain management
- o Take Home Point
 - An analgosedation based sedation protocol using fentanyl resulted in better pain management, lighter sedation levels, reduced duration of MV, and reduced LOS in the ICU.
- Stephens RJ, et al. Analgosedation practices and the impact of sedation depth on clinical outcomes among patients requiring mechanical ventilation in the ED: A cohort study. Chest. 2017 [Epub ahead of print]
 - Objective
 - Characterize modern ED analgosedation practices
 - Assess the relationship between ED sedation depth and clinical outcomes
 - o Study
 - Secondary analysis of prospective, observational cohort from single, tertiary, academic, medical center
 - Inclusion
 - Age greater than or equal to 18 years
 - Mechanical ventilation through an ETT
 - Measurements
 - Sedation depth via RASS
 - Defined deep sedation as RASS -3 to -5
 - Primary outcome: hospital mortality
 - Secondary outcomes: ventilator/hospital/ICU free days
 - o Results
 - 414 patients in final analysis
 - 317 intubated in the ED
 - Sedation practices
 - 354 received fentanyl (85.5%)
 - 254 received midazolam (61.4%)
 - 194 received propofol (46.9%)
 - 68 received ketamine (16.4%)
 - <u>59 patients (14.3%) received no analgesia and 63 (15.2%) received no</u> sedation while in the ED
 - Outcomes
 - Median ED RASS level was -3
 - Deep sedation observed in 64%
 - Primary outcome occurred in 60 patients (14.5%)
 - ED RASS was deeper in patients who died (-4) compared with those who survived (-3)
 - Deeper ED RASS associated with mortality (aOR 0.77; CI 0.54-0.94)
 - No difference between trauma or medical
 - Take Home Point
 - Deep sedation is common in mechanically ventilated ED patients and associated with worse outcome