

Propofol and Survival in the Critically Ill

Key Article

• Kotani Y., Pruna A., Turi S. et al. Propofol and survival: an updated meta-analysis of randomized clinical trials. Crit Care. 2023; 27:139.

Background

- Propofol is commonly used for rapid sequence intubation as well as sedation in the perioperative, ICU, and ED settings. It is also commonly used for procedural sedation.
- Propofol acts on GABA receptors exhibiting CV effects via vasodilatory mechanism and CNS depression.
- Its appeal is its rapid onset and elimination.
- Acute effects of propofol as an induction agent include hypotension, respiratory depression and apnea particularly with procedural sedation.
- Proposed mechanisms of harm with propofol:
 - Propofol infusion syndrome (PRIS): characterized by metabolic acidosis, rhabdomyolysis,
 HLD, hepatomegaly associated with high doses and long term use
 - o Accidental microbial contamination with lipophilic nature supporting bacterial growth
 - Inhibition of organ-protective effects of drugs i.e. volatile anesthetics and techniques i.e.
 remote ischemic preconditioning
 - HD instability and reduced myocardial contractility
- Current data
 - Avoided in pediatric population, given RCT found increased mortality among critically ill
 pediatric patients receiving propofol for sedation

Objective

• Investigate if there is a mortality difference between proposol and other sedative agents in postoperative and critically ill patients.

Methods

- Study/location: Meta-analysis of RCTs
- Studies
 - o Included: RCTs comparing propofol to any comparator in any clinical setting
 - Excluded: RCTs with non-parallel design (cross over), overlapping publications, nonhuman studies, propofol used for palliative or end of life care, propofol used as single IV bolus or for minor procedures
- Trial procedures
 - Two investigators searched PubMed, Google Scholar, Cochrane Central Register of Controlled Trials, ClinicalTrials.gov up to August 19th, 2022.
 - Assessed risk of bias using Cochrane risk of bias tool for randomized trials
 - o Standardized data collection form used. RR and NNH calculated.

- Subgroup analysis performed to evaluate differences in clinical settings, surgical vs nonsurgical patients, and use of propofol in comparator arm.
- Primary outcome
 - o All-cause mortality at the longest follow up available

Results

- 11,204 records identified
 - o 252 RCTs included (30,757 patients between 1987-2022)
 - Setting
 - 200 surgical: 153 non-cardiac surgery; 47 cardiac surgery
 - 52 ICU
 - Comparator
 - 172 volatile anesthetics
 - 71 IV agents
- Primary Outcomes All-Cause Mortality
 - Overall population
 - Propofol group: 5.2%
 - Comparator group: 4.3%
 - RR 1.1, 95% CI 1.01-1.2; p = 0.03
 - NNH 235
 - Statistically significant
 - Subgroup: ICU vs cardiac vs non-cardiac surgery
 - Only statistically significant for cardiac surgery
 - For ICU
 - Propofol: 15%
 - Comparator group: 13%
 - RR 1.04, 95% CI 0.93-1.16; p = 0.5
 - NOT statistically significant
 - o Remaining subgroups analysis "magnitude and direction" maintained

Limitations Identified by Authors

- High risk of bias in 16% of studies. Noted mortality difference when excluded biased studies.
- Unable to double blind studies given close titration of medications in periop and ICU settings
- Mortality outcome time point varied with studies. Used mortality at longest follow up.
- Potential confounder being duration of infusion (data was not available)
- Likely sedative cross over. Other potentially detrimental hypnotic agents likely used in propofol group as well confounding relationship between propofol and mortality
- Limited generalizability since majority of studies were volatile anesthetics likely perioperative setting.

Take Home Points

- Propofol increased mortality in this study by 10% compared to other hypnotic agents. However, no statistically significant mortality increase when ICU subgroup analysis performed.
- In addition to the hypnotic agent possibly having a difference in outcomes, the depth and duration of sedation likely has implications as well. Important to prioritize lighter sedation and sedation holidays for critically ill patients.