

Intermittent or Continuous Antibiotic Infusions for Sepsis?

Key Article

• Dulhunty JM, Brett SJ, De Waele JJ, et al. Continuous vs Intermittent B-Lactam Antibiotic Infusions in Critically III Patients with Sepsis. The BLING III Randomized Clinical Trial. JAMA. Published online June 12, 2024.

Background

- A cornerstone of sepsis resuscitation is the early administration of antibiotic therapy directed at the likely organism.
- B-lactam antibiotics are an important class of antibiotics used in the treatment of sepsis.
- Piperacillin-tazobactam and meropenem are two of the most common B-lactams empirically given in the early resuscitation of patients with sepsis.
- Typically, B-lactam antibiotics are administered via short (30 min) infusions.
- Recent trials have reported that continuous infusions of B-lactam antibiotics result in higher concentrations and may be more effective than intermittent infusions.
- At present, the data on continuous infusions is not conclusive as it pertains to patient-centered outcomes.

Objective

• To determine whether a continuous infusion of piperacillin-tazobactam or meropenem results in decreased all-cause mortality at 90 days in critically ill patients with sepsis when compared to intermittent infusions.

Methods

- International, open-label, phase 3, randomized clinical trial.
- 104 ICUs in Australia, Belgium, France, Malaysia, New Zealand, Sweden, and the UK
- Patients
 - o Included:
 - Adults ≥ 18 years
 - Admitted to the ICU
 - A documented site or strong suspicion of infection
 - Treatment with piperacillin-tazobactam or meropenem within the previous 24 hrs
 - 1 or more organ dysfunction within the previous 24 hours
 - Expected to remain in the ICU for at least the next calendar day.
- Trial procedures
 - Randomized in 1:1 ratio to receive piperacillin-tazobactam or meropenem by either continuous (intervention group) or intermittent (control group) infusion.
 - Interventions
 - The total 24-hour dose of antibiotics were determined by the attending physician.

- All participants received at least 1 B-lactam antibiotic infusion prior to openlabel randomized treatment.
- Continuous or intermittent infusions were continued for the duration of the treatment course or until ICU discharge.
- Primary outcome
 - All-cause mortality at 90 days
- Secondary outcomes
 - Clinical cure defined as the completion of the B-lactam antibiotic treatment course by day 14 without need to restart antibiotics within 48 hours of cessation for the same infection.
 - New infection, colonization, infection with an MDR organism, or C.diff up to 14 days after randomization.
 - All-cause ICU mortality
 - All-cause hospital mortality

Results

- A total of 7202 patients were randomized, with 7031 used in the primary analysis.
 - Continuous infusion group: 3498 patients
 - o Intermittent infusion group: 3533 patients
 - Similar baseline characteristics
- Most common sites of infection
 - o Pulmonary: 60%
 - o Intraabdominal: 13%
 - o Blood: 8%
 - o Urinary: 5.5%
- Median duration of treatment
 - Continuous infusion group: 5.8 days
 - o Intermittent infusion group: 5.7 days
 - o Daily dose of study drug was similar between groups.
- Primary Outcome
 - Continuous infusion group: 24.9%
 - Intermittent infusion group: 26.8%
 - Absolute difference: -1.9% [95% CI -4.9% to 1.1%]
 - o P=0.08
- Secondary outcome
 - Clinical cure at day 14
 - Absolute difference: 5.7% [95% CI 2.4% to 9.1%]
 - Statistically significant
 - No differences in rates of new infection, colonization, infection with an MDR organism,
 ICU mortality, hospital mortality
- Adverse events
 - Continuous infusion group: 10
 - o Intermittent infusion group: 6
 - 1 serious event in continuous infusion group that may have been due to infusion meropenem – patient developed severe encephalopathy that led to aspiration, cardiac arrest, and death.

Limitations Identified by Authors

- Unblinded, open-label study
- Some patients may have had a noninfectious etiology of organ dysfunction at randomization.
- No adjustment for susceptibility results to the B-lactam
- No assessment of impact of additional antibiotics
- Patients received an intermittent dose of the antibiotic prior to randomization.

Take Home Points

- The use of a continuous infusion of a B-lactam antibiotic did not statistically improve 90-day allcause mortality when compared to an intermittent infusion in ICU patients with confirmed or presumed sepsis.
- Authors cite that the confidence interval around the effect estimate does include the possibility
 of a benefit and that they found a statistical improvement in rates of clinical cure with
 continuous infusion.

Key Article

 Abdul-Aziz MH, Hammond NE, Brett SJ, et al. Prolonged vs Intermittent Infusions of B-lactam Antibiotics in Adults with Sepsis or Septic Shock. A Systematic Review and Meta-Analysis. JAMA. 2024; Published online June 12, 2024.

Background

- B-lactams are widely used as first-line antibiotics for treatment of sepsis and septic shock.
- These agents display time-dependent bactericidal activity optimal when free drug concentration remains above the MIC of the infecting pathogen for at least 40-70% of the dosing interval.
- Biologic rationale that prolonged infusions may be more effective compared with conventional intermittent dosing. Supported by pharmacokinetic-pharmacodynamic studies that demonstrate prolonged infusions achieve B-lactam antibiotic exposures associated with maximal bacterialkilling more consistently than intermittent infusions.

Objective

• To assess whether administration of B-lactam antibiotics by prolonged infusions are associated with reduced 90-day all-cause mortality.

Methods

- Systematic review of RCTs
- RCTs
 - Recruited critically ill adults.
 - With sepsis or septic shock
 - Compared administration of prolonged infusions with intermittent infusions of 1 or more B-lactam antibiotics
 - Prolonged infusions defined as either an extended infusion (2 hours or longer) or a continuous infusion.
 - Intermittent infusion defined as fewer than 2-hour dosing interval.
- Primary outcome

- All-cause mortality at 90 days
- Secondary outcomes
 - ICU mortality
 - ICU LOS
 - Clinical cure
 - Microbiologic cure
 - Adverse events
- Prespecified subgroups
 - Meropenem vs. piperacillin-tazobactam
 - Culture-positive vs. culture-negative infection
 - o Gram-negative vs. gram-positive
 - o RRT vs. no RRT
 - Lung vs. other infections
 - Sepsis vs. septic shock
 - o Male vs. female patients

Results

- 18 RCTs included totaling 9108 patients.
 - Median of 59 trial participants
 - o Median APACHE II score: 20
 - Median SOFA score: 8
 - o 17 trials compared continuous infusion vs. intermittent.
 - o 1 trial compared extended infusion vs. intermittent.
 - Median duration of treatment 7 days for prolonged infusions vs. 9 days in intermittent infusions
- Primary Outcome
 - 17 trials that evaluated the primary outcome 9014 patients.
 - Pooled estimated RR for all-cause 90-day mortality for prolonged infusions compared with intermittent infusions was 0.86 (95% CI 0.71 to 0.98)
 - 99% posterior probability that prolonged infusions were associated with lower 90-day mortality.
 - Certainty of evidence was adjudicated as high.
- Bayesian Analysis
 - o 14-point relative reduction in risk of mortality at 90 days with prolonged infusions
 - o NNT to prevent 1 death was 26 patients.
- Subgroup Analyses
 - No evidence that prolonged infusions compared with intermittent infusions for all-cause
 90-day mortality was different between the groups.
- Secondary outcome
 - Continuous infusions compared with intermittent infusions were associated with reduced ICU mortality (RR 0.84, high certainty) and increased clinical cure (RR 1.16, moderate certainty)
 - No differences in microbiologic cure, adverse events, or ICU LOS.

Limitations Identified by Authors

• Included trials used various definitions for sepsis and septic shock.

- Current analysis combined extended and continuous infusions, though only 1 trial looked at an extended infusion.
- Variable definitions of clinical cure across studies.

Take Home Point

• The use of a prolonged infusion of a B-lactam antibiotic was associated with a reduced risk of 90-day all-cause mortality in ICU patients with sepsis or septic shock when compared to an intermittent infusion.